博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Java之LinkedList源码解读(JDK 1.8)
阅读量:5903 次
发布时间:2019-06-19

本文共 21636 字,大约阅读时间需要 72 分钟。

hot3.png

java.util.LinkedList

  •     双向链表实现的List。
  •     基于JDK 1.8。
  •     没有使用标准的注释,并适当调整了代码的缩进以方便介绍。
  •     里面很多方法的实现是一样的,不过可以让外界感觉其提供了更多的行为。
  •     需要花比ArrayList更多一点的时间理解

package com.anxpp.thinkinjava.chapter11.sourse;import java.util.AbstractSequentialList;import java.util.Collection;import java.util.ConcurrentModificationException;import java.util.Deque;import java.util.Iterator;import java.util.List;import java.util.ListIterator;import java.util.NoSuchElementException;import java.util.Objects;import java.util.Spliterator;import java.util.Spliterators;import java.util.function.Consumer;/** * LinkedList底层使用双向链表,实现了List和deque。实现所有的可选List操作,并可以只有所有元素(包括空值) * 其大小理论上仅受内存大小的限制 * * 所有的操作都可以作为一个双联列表来执行(及对双向链表操作)。 * 把对链表的操作封装起来,并对外提供看起来是对普通列表操作的方法。 * 遍历从起点、终点、或指定位置开始 * 内部方法,注释会描述为节点的操作(如删除第一个节点),公开的方法会描述为元素的操作(如删除第一个元素) * * LinkedList不是线程安全的,如果在多线程中使用(修改),需要在外部作同步处理。 *  * 需要弄清元素(节点)的索引和位置的区别,不然有几个地方不好理解,具体在碰到的地方会解释。 *  * 迭代器可以快速报错 */public class LinkedList
extends AbstractSequentialList
implements List
, Deque
, Cloneable, java.io.Serializable{ //容量 transient int size = 0; //首节点 transient Node
first; //尾节点 transient Node
last; //默认构造函数 public LinkedList() { } //通过一个集合初始化LinkedList,元素顺序有这个集合的迭代器返回顺序决定 public LinkedList(Collection
c) { this(); addAll(c); } //使用对应参数作为第一个节点,内部使用 private void linkFirst(E e) { final Node
f = first;//得到首节点 final Node
newNode = new Node<>(null, e, f);//创建一个节点 first = newNode; //设置首节点 if (f == null) last = newNode; //如果之前首节点为空(size==0),那么尾节点就是首节点 else f.prev = newNode; //如果之前首节点不为空,之前的首节点的前一个节点为当前首节点 size++; //长度+1 modCount++; //修改次数+1 } //使用对应参数作为尾节点 void linkLast(E e) { final Node
l = last; //得到尾节点 final Node
newNode = new Node<>(l, e, null);//使用参数创建一个节点 last = newNode; //设置尾节点 if (l == null) first = newNode; //如果之前尾节点为空(size==0),首节点即尾节点 else l.next = newNode; //如果之前尾节点不为空,之前的尾节点的后一个就是当前的尾节点 size++; modCount++; } //在指定节点前插入节点,节点succ不能为空 void linkBefore(E e, Node
succ) { final Node
pred = succ.prev;//获取前一个节点 final Node
newNode = new Node<>(pred, e, succ);//使用参数创建新的节点,向前指向前一个节点,向后指向当前节点 succ.prev = newNode;//当前节点指向新的节点 if (pred == null) first = newNode;//如果前一个节点为null,新的节点就是首节点 else pred.next = newNode;//如果存在前节点,那么前节点的向后指向新节点 size++; modCount++; } //删除首节点并返回删除前首节点的值,内部使用 private E unlinkFirst(Node
f) { final E element = f.item;//获取首节点的值 final Node
next = f.next;//得到下一个节点 f.item = null; f.next = null; //便于垃圾回收期清理 first = next; //首节点的下一个节点成为新的首节点 if (next == null) last = null; //如果不存在下一个节点,则首尾都为null(空表) else next.prev = null;//如果存在下一个节点,那它向前指向null size--; modCount++; return element; } //删除尾节点并返回删除前尾节点的值,内部使用 private E unlinkLast(Node
l) { final E element = l.item;//获取值 final Node
prev = l.prev;//获取尾节点前一个节点 l.item = null; l.prev = null; //便于垃圾回收期清理 last = prev; //前一个节点成为新的尾节点 if (prev == null) first = null; //如果前一个节点不存在,则首尾都为null(空表) else prev.next = null;//如果前一个节点存在,先后指向null size--; modCount++; return element; } //删除指定节点并返回被删除的元素值 E unlink(Node
x) { //获取当前值和前后节点 final E element = x.item; final Node
next = x.next; final Node
prev = x.prev; if (prev == null) { first = next; //如果前一个节点为空(如当前节点为首节点),后一个节点成为新的首节点 } else { prev.next = next;//如果前一个节点不为空,那么他先后指向当前的下一个节点 x.prev = null; //方便gc回收 } if (next == null) { last = prev; //如果后一个节点为空(如当前节点为尾节点),当前节点前一个成为新的尾节点 } else { next.prev = prev;//如果后一个节点不为空,后一个节点向前指向当前的前一个节点 x.next = null; //方便gc回收 } x.item = null; //方便gc回收 size--; modCount++; return element; } //获取第一个元素 public E getFirst() { final Node
f = first;//得到首节点 if (f == null) //如果为空,抛出异常 throw new NoSuchElementException(); return f.item; } //获取最后一个元素 public E getLast() { final Node
l = last;//得到尾节点 if (l == null) //如果为空,抛出异常 throw new NoSuchElementException(); return l.item; } //删除第一个元素并返回删除的元素 public E removeFirst() { final Node
f = first;//得到第一个节点 if (f == null) //如果为空,抛出异常 throw new NoSuchElementException(); return unlinkFirst(f); } //删除最后一个元素并返回删除的值 public E removeLast() { final Node
l = last;//得到最后一个节点 if (l == null) //如果为空,抛出异常 throw new NoSuchElementException(); return unlinkLast(l); } //添加元素作为第一个元素 public void addFirst(E e) { linkFirst(e); } //店家元素作为最后一个元素 public void addLast(E e) { linkLast(e); } //检查是否包含某个元素,返回bool public boolean contains(Object o) { return indexOf(o) != -1;//返回指定元素的索引位置,不存在就返回-1,然后比较返回bool值 } //返回列表长度 public int size() { return size; } //添加一个元素,默认添加到末尾作为最后一个元素 public boolean add(E e) { linkLast(e); return true; } //删除指定元素,默认从first节点开始,删除第一次出现的那个元素 public boolean remove(Object o) { //会根据是否为null分开处理。若值不是null,会用到对象的equals()方法 if (o == null) { for (Node
x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node
x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } //添加指定集合的元素到列表,默认从最后开始添加 public boolean addAll(Collection
c) { return addAll(size, c);//size表示最后一个位置,可以理解为元素的位置分别为1~size } //从指定位置(而不是下标!下标即索引从0开始,位置可以看做从1开始,其实也是0)后面添加指定集合的元素到列表中,只要有至少一次添加就会返回true //index换成position应该会更好理解,所以也就是从索引为index(position)的元素的前面索引为index-1的后面添加! //当然位置可以为0啊,为0的时候就是从位置0(虽然它不存在)后面开始添加嘛,所以理所当前就是添加到第一个位置(位置1的前面)的前面了啊! //比如列表:0 1 2 3,如果此处index=4(实际索引为3),就是在元素3后面添加;如果index=3(实际索引为2),就在元素2后面添加。 //原谅我的表达水平,我已经尽力解释了... public boolean addAll(int index, Collection
c) { checkPositionIndex(index); //检查索引是否正确(0<=index<=size) Object[] a = c.toArray(); //得到元素数组 int numNew = a.length; //得到元素个数 if (numNew == 0) //若没有元素要添加,直接返回false return false; Node
pred, succ; if (index == size) { //如果是在末尾开始添加,当前节点后一个节点初始化为null,前一个节点为尾节点 succ = null; //这里可以看做node(index),不过index=size了(index最大只能是size-1),所以这里的succ只能=null,也方便后面判断 pred = last; //这里看做noede(index-1),当然实现是不能这么写的,看做这样只是为了好理解,所以就是在node(index-1的后面开始添加元素) } else { //如果不是从末尾开始添加,当前位置的节点为指定位置的节点,前一个节点为要添加的节点的前一个节点 succ = node(index); //添加好元素后(整个新加的)的后一个节点 pred = succ.prev; //这里依然是node(index-1) } //遍历数组并添加到列表中 for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; Node
newNode = new Node<>(pred, e, null);//创建一个节点,向前指向上面得到的前节点 if (pred == null) first = newNode; //若果前节点为null,则新加的节点为首节点 else pred.next = newNode;//如果存在前节点,前节点会向后指向新加的节点 pred = newNode; //新加的节点成为前一个节点 } if (succ == null) { //pred.next = null //加上这句也可以更好的理解 last = pred; //如果是从最后开始添加的,则最后添加的节点成为尾节点 } else { pred.next = succ; //如果不是从最后开始添加的,则最后添加的节点向后指向之前得到的后续第一个节点 succ.prev = pred; //当前,后续的第一个节点也应改为向前指向最后一个添加的节点 } size += numNew; modCount++; return true; } //清空表 public void clear() { //方便gc回收垃圾 for (Node
x = first; x != null; ) { Node
next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } //获取指定索引的节点的值 public E get(int index) { checkElementIndex(index); return node(index).item; } //修改指定索引的值并返回之前的值 public E set(int index, E element) { checkElementIndex(index); Node
x = node(index); E oldVal = x.item; x.item = element; return oldVal; } //指定位置后面(即索引为这个值的元素的前面)添加元素 public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); //如果指定位置为最后,则添加到链表最后 else //如果指定位置不是最后,则添加到指定位置前 linkBefore(element, node(index)); } //删除指定位置的元素, public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } //检查索引是否超出范围,因为元素索引是0~size-1的,所以index必须满足0<=index
= 0 && index < size; } //检查位置是否超出范围,index必须在index~size之间(含),如果超出,返回false private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } //异常详情 private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } //检查元素索引是否超出范围,若已超出,就抛出异常 private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //检查位置是否超出范围,若已超出,就抛出异常 private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //获取指定位置的节点 Node
node(int index) { //如果位置索引小于列表长度的一半(或一半减一),从前面开始遍历;否则,从后面开始遍历 if (index < (size >> 1)) { Node
x = first;//index==0时不会循环,直接返回first for (int i = 0; i < index; i++) x = x.next; return x; } else { Node
x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } //获取指定元素从first开始的索引位置,不存在就返回-1 //不能按条件双向找了,所以通常根据索引获得元素的速度比通过元素获得索引的速度快 public int indexOf(Object o) { int index = 0; if (o == null) { for (Node
x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node
x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } //获取指定元素从first开始最后出现的索引,不存在就返回-1 //但实际查找是从last开始的 public int lastIndexOf(Object o) { int index = size; if (o == null) { for (Node
x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { for (Node
x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } //提供普通队列和双向队列的功能,当然,也可以实现栈,FIFO,FILO //出队(从前端),获得第一个元素,不存在会返回null,不会删除元素(节点) public E peek() { final Node
f = first; return (f == null) ? null : f.item; } //出队(从前端),不删除元素,若为null会抛出异常而不是返回null public E element() { return getFirst(); } //出队(从前端),如果不存在会返回null,存在的话会返回值并移除这个元素(节点) public E poll() { final Node
f = first; return (f == null) ? null : unlinkFirst(f); } //出队(从前端),如果不存在会抛出异常而不是返回null,存在的话会返回值并移除这个元素(节点) public E remove() { return removeFirst(); } //入队(从后端),始终返回true public boolean offer(E e) { return add(e); } //入队(从前端),始终返回true public boolean offerFirst(E e) { addFirst(e); return true; } //入队(从后端),始终返回true public boolean offerLast(E e) { addLast(e);//linkLast(e) return true; } //出队(从前端),获得第一个元素,不存在会返回null,不会删除元素(节点) public E peekFirst() { final Node
f = first; return (f == null) ? null : f.item; } //出队(从后端),获得最后一个元素,不存在会返回null,不会删除元素(节点) public E peekLast() { final Node
l = last; return (l == null) ? null : l.item; } //出队(从前端),获得第一个元素,不存在会返回null,会删除元素(节点) public E pollFirst() { final Node
f = first; return (f == null) ? null : unlinkFirst(f); } //出队(从后端),获得最后一个元素,不存在会返回null,会删除元素(节点) public E pollLast() { final Node
l = last; return (l == null) ? null : unlinkLast(l); } //入栈,从前面添加 public void push(E e) { addFirst(e); } //出栈,返回栈顶元素,从前面移除(会删除) public E pop() { return removeFirst(); } /** * Removes the first occurrence of the specified element in this * list (when traversing the list from head to tail). If the list * does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ public boolean removeFirstOccurrence(Object o) { return remove(o); } /** * Removes the last occurrence of the specified element in this * list (when traversing the list from head to tail). If the list * does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node
x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node
x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * Returns a list-iterator of the elements in this list (in proper * sequence), starting at the specified position in the list. * Obeys the general contract of {@code List.listIterator(int)}.

* * The list-iterator is fail-fast: if the list is structurally * modified at any time after the Iterator is created, in any way except * through the list-iterator's own {@code remove} or {@code add} * methods, the list-iterator will throw a * {@code ConcurrentModificationException}. Thus, in the face of * concurrent modification, the iterator fails quickly and cleanly, rather * than risking arbitrary, non-deterministic behavior at an undetermined * time in the future. * * @param index index of the first element to be returned from the * list-iterator (by a call to {@code next}) * @return a ListIterator of the elements in this list (in proper * sequence), starting at the specified position in the list * @throws IndexOutOfBoundsException {@inheritDoc} * @see List#listIterator(int) */ public ListIterator

listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } private class ListItr implements ListIterator
{ private Node
lastReturned; private Node
next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node
lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } public void forEachRemaining(Consumer
action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } //节点的数据结构,包含前后节点的引用和当前节点 private static class Node
{ E item; Node
next; Node
prev; Node(Node
prev, E element, Node
next) { this.item = element; this.next = next; this.prev = prev; } } //返回迭代器 public Iterator
descendingIterator() { return new DescendingIterator(); } //因为采用链表实现,所以迭代器很简单 private class DescendingIterator implements Iterator
{ private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList
superClone() { try { return (LinkedList
) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Returns a shallow copy of this {@code LinkedList}. (The elements * themselves are not cloned.) * * @return a shallow copy of this {@code LinkedList} instance */ public Object clone() { LinkedList
clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node
x = first; x != null; x = x.next) clone.add(x.item); return clone; } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list * in proper sequence */ public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node

x = first; x != null; x = x.next) result[i++] = x.item; return result; } /** * Returns an array containing all of the elements in this list in * proper sequence (from first to last element); the runtime type of * the returned array is that of the specified array. If the list fits * in the specified array, it is returned therein. Otherwise, a new * array is allocated with the runtime type of the specified array and * the size of this list. * *

If the list fits in the specified array with room to spare (i.e., * the array has more elements than the list), the element in the array * immediately following the end of the list is set to {@code null}. * (This is useful in determining the length of the list only if * the caller knows that the list does not contain any null elements.) * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a list known to contain only strings. * The following code can be used to dump the list into a newly * allocated array of {@code String}: * *

     *     String[] y = x.toArray(new String[0]);
* * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public
T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size); int i = 0; Object[] result = a; for (Node
x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; /** * Saves the state of this {@code LinkedList} instance to a stream * (that is, serializes it). * * @serialData The size of the list (the number of elements it * contains) is emitted (int), followed by all of its * elements (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node
x = first; x != null; x = x.next) s.writeObject(x.item); } /** * Reconstitutes this {@code LinkedList} instance from a stream * (that is, deserializes it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } /** * Creates a
late-binding * and
fail-fast {@link Spliterator} over the elements in this * list. * *

The {@code Spliterator} reports {@link Spliterator#SIZED} and * {@link Spliterator#ORDERED}. Overriding implementations should document * the reporting of additional characteristic values. * * @implNote * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED} * and implements {@code trySplit} to permit limited parallelism.. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator

spliterator() { return new LLSpliterator
(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator
implements Spliterator
{ static final int BATCH_UNIT = 1 << 10; // batch array size increment static final int MAX_BATCH = 1 << 25; // max batch array size; final LinkedList
list; // null OK unless traversed Node
current; // current node; null until initialized int est; // size estimate; -1 until first needed int expectedModCount; // initialized when est set int batch; // batch size for splits LLSpliterator(LinkedList
list, int est, int expectedModCount) { this.list = list; this.est = est; this.expectedModCount = expectedModCount; } final int getEst() { int s; // force initialization final LinkedList
lst; if ((s = est) < 0) { if ((lst = list) == null) s = est = 0; else { expectedModCount = lst.modCount; current = lst.first; s = est = lst.size; } } return s; } public long estimateSize() { return (long) getEst(); } public Spliterator
trySplit() { Node
p; int s = getEst(); if (s > 1 && (p = current) != null) { int n = batch + BATCH_UNIT; if (n > s) n = s; if (n > MAX_BATCH) n = MAX_BATCH; Object[] a = new Object[n]; int j = 0; do { a[j++] = p.item; } while ((p = p.next) != null && j < n); current = p; batch = j; est = s - j; return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); } return null; } public void forEachRemaining(Consumer
action) { Node
p; int n; if (action == null) throw new NullPointerException(); if ((n = getEst()) > 0 && (p = current) != null) { current = null; est = 0; do { E e = p.item; p = p.next; action.accept(e); } while (p != null && --n > 0); } if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); } public boolean tryAdvance(Consumer
action) { Node
p; if (action == null) throw new NullPointerException(); if (getEst() > 0 && (p = current) != null) { --est; E e = p.item; current = p.next; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } }}

转载于:https://my.oschina.net/lvzunwei/blog/687823

你可能感兴趣的文章
完美分页存储过程(有缺陷,无法加入条件)
查看>>
oracle主键自增
查看>>
PHP入门part2
查看>>
Java学习笔记-方法总结
查看>>
P1250 种树
查看>>
模拟滤波器到数字滤波器的转化
查看>>
[三]基础数据类型之Integer详解
查看>>
git操作
查看>>
mac用户丢失管理员身份急救
查看>>
奇异值分解
查看>>
HDU 1754 I Hate It
查看>>
Android教程(2.1) Activity的详细讲解
查看>>
15、集合--TreeSet的源码分析(待完成)
查看>>
TCP window size
查看>>
双向BFS
查看>>
centos 网站目录权限参考
查看>>
lighttpd fastcgi的搭建
查看>>
引入间接隔离变化(三)
查看>>
VMworld 2011第三天小记
查看>>
统一沟通-技巧-4-让国内域名提供商“提供”SRV记录
查看>>